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Introduction
Drought has been a global problem, pushing many rivers and lakes 
worldwide to the lowest levels ever seen. Some hotly discussed 
methods, such as atmospheric water collection, will take many 
years to fully support current infrastructure. Monitoring the hy-
drological level, while providing valuable data, does not contribute 
to resolving the shortage. Water cuts have been implemented in 
many regions and adversely affected agriculture, which accounts 
for ~70% of all water usage. Therefore it is urgent to call for 
innovative ideas in water technologies and partnerships. Most 
current irrigation systems are based on farmers’ prior experience, 
not real-time data from the field. In addition, different plants/
crops have different water needs at various stages of growth. 
Overwatering and underwatering are both detrimental to plant 
yield. A novel solution is introduced to use accessible technologies 
including massive Mobile IoT and Machine Learning to overcome 
existing hurdles, saving water significantly within agricultural and 
municipal contexts, and maximizing water efficiency based on 
various growth stages of plants. 

Methods
This solution is a water control system (Figure 1) to optimize water 
use in a heavy water usage scenario in agriculture and municipal, 
combining low power Mobile IoT sensors that collect and pro-
cess data, machine learning that provides reliable identification 
of growth events of a plant/crop, wireless technologies, and a 
processing algorithm. The low-power microcontroller ESP32 
and various Mobile IoT sensors (rain sensor, soil moisture sensor, 
soil temperature sensor, and ultrasonic sensor) collect real-time 
weather and soil conditions. TinyML Machine Learning algorithm 
and ESP32-CAM to detect and classify plant objects for different 
plant growth stages. LoRa Wireless transmission systems provide 
long-range communication capabilities, up to 5 kilometers in urban 
areas and up to 40 kilometers or more in rural areas, to transmit 
real-time data from the field to the control center (Kamal et al.). A 
data computing algorithm processes and returns data for use. Web 
server and data access provide remote monitoring and control.

Procedure 1 is to build and test Mobile IoT with ESP32/Wi-Fi/LoRa 
(Figure 2), including building ESP32 with Wi-Fi and sensors, writing 
Arduino and algorithm, software code, running pumps and relays 
to verify system integrity, and building another hardware system 
and software utilizing ESP32 with LoRa Sender and Receiver.

Procedure 2 is a field test to evaluate how much water can be 
saved with the IoT System. Three soil areas are set up for comparison 
with Area 1 for targeted moisture 20~40%, Area 2 for 40~60%, and 
Area 3 for 60~80% (Figure 3). The system built in Procedure 1 is 
used to collect data for 5 days. Day 1 data is also used as the “Base 
amount” of water for the traditional method. The data collected in 
5 days is compared with the Traditional Method.

Fig. 1. Overall System Diagram

Fig. 2. The System and Monitor
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Procedure 3 uses Machine Learning to train cotton images, build 
models, and test. It is acknowledged that different plants have 
different levels of water needs and different growth stages of the 
same plant entail different water amounts for growth productivity. 
To maximize irrigation efficiency, it is necessary to enable the 
system to recognize various crucial events of plant growth and 
adjust watering in real-time. Cotton plant, one of the most common 
and water-intensive crops, was adopted to test the system. 

Based on the cotton plant growth events (Gaber) (Figure 4), a 
Machine Learning mechanism based on Convolutional Neural Net-
work Architecture to Detect Cotton Growth Stages was introduced 
to the system to train cotton image recognition.

IoT-based microcontrollers utilize TinyML to compile the Neural 
Network model data into a memory-efficient inference library (less 
than 256kB), which is written into the microcontroller for runtime 
object detection (Dickson). Figure 5 is the flow chart showing how 
the cotton pre-existing training data is collected by ESP32-CAM 
and entered into TinyML for training and compiled into TinyML 
MobileNetV2 model (Sandler and Howard). After the model is built 
into ESP32-CAM, the camera can capture real cotton objects in a 
particular growth stage. Figure 6 shows the computer algorithm 
utilizing Machine Learning.

Procedure 4 performs a simulation to calculate the water saving 
on cotton with the Machine Learning method that detects each 
cotton growth stage even when emerging on different days, com-
pared to the traditional method with a fixed water plan. A Monte 
Carlo simulation was deployed over 125 days, 100 times (Table 1).

Fig. 3. The Field Test and 
Monitor

Fig. 4. Cotton Growth Events Timeline

Fig. 5. The Neural Network to train the dataset into the TinyML MobileNetV2 
model. 

Fig. 6. Computer Algorithm 

Table 1. Compare the total 125-day water plan via Traditional Method vs. 
Machine Learning Detection Method.

Traditional Method

Machine Learning Method
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Results
In Procedure 1, ESP32 with Wi-Fi, LoRa, and Mobile IoT sensors were 
built successfully.  In Procedure 2, data comparison between the 
traditional method and the Mobile IoT method showed 26%, 31%, 
and 42% water reduction respectively for three different desired 
soil moisture areas (Figure 7).

In Procedure 3, images of pre-existing cotton objects are collect-
ed by ESP32-CAM, trained and compiled in the TinyML MobileNetV2 
model, and deployed into ESP32-CAM. The real cotton object was 
detected successfully (Figure 8).

In Procedure 4, the Monte Carlo simulation result showed that 
the Machine Learning Detection Method used a total of water levels 
between 15.64 inches and 18.86 inches with an average of 17.24 
inches, an 18.5% saving of water use, compared to the Traditional 
Method which used a total of 21.15 inches of water (Figure 9).

The field-testing data showed a roughly 26~42% reduction in 
water use with the Mobile IoT method compared to traditional 
methods. Furthermore, after the Machine Learning Detection 
was integrated into the prototype based on cotton plant growth 
stages, there was an 18.5% additional reduction in water use using 
the Machine Learning Detection method compared to traditional 
methods. Overall there was a 40%~53% water saving when the 
Mobile IoT method and Machine Learning Detection method were 
combined.

Discussion 
The key innovation of the system (Figure 10) is that it has estab-

lished a complete low-power solution that can be applied on a 
large scale, with Mobile IoT and Machine Learning mechanisms 
based on crop growth stages and specific soil moisture require-
ments. It therefore has achieved precision irrigation capabilities 
which improve not only water efficiencies but also crop yields. 

Energy sustainability must be considered in large-scale agricul-
ture fields, necessitating low-power Mobile IoT sensors, low-power 
ESP32 microcontrollers and systems, and LoRa for Low Power Long 
Range Radio technology transmission. 

A precise irrigation system not only saves water but also improves 
yield; Machine Learning is an ideal method to detect a plant’s 
growth stage and provide data for water control. A new TinyML 
algorithm trains and compiles pre-existing images offline and 
writes a small-sized library into the microcontroller for runtime 
plant detection, resulting in a combined 40%~53% water saving.

One major challenge in the system is multi-function IoT sensors 
with higher accuracy and stability are needed. Another challenge 
calls for an extensive database with growth stage information of 
various crop types as input to the machine learning algorithm.

Conclusion
In conclusion, this MMW solution has the potential to be used 
as a water-saving system for agriculture crop growth, municipal 
landscaping, and other heavy water usage scenarios. 
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