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Introduction 
The quest to understand exoplanets, or planets outside our solar 

system, has become one of astronomy’s most intriguing and active 
fields. The discovery of exoplanets has accelerated with the aid of 
advanced telescopes and observation techniques. As the number of 
candidate exoplanets increases, there is a growing need to analyze 
these datasets collected from advanced telescopes. Telescopes 
churn out millions of data points that are not feasible to understand 
through manual work done by scientists. Teams of scientists within 
the field need a more efficient way to understand these datasets. 
One extremely effective way to do this is by employing machine 
learning algorithms, which can comb through the hundreds 
of thousands of data points collected by telescopes and make 
predictions by identifying patterns in the data. 

Machine learning, a subfield of artificial intelligence, has made 
significant strides in astronomy. It offers the potential to automate 
and enhance the identification of exoplanets based on available 
data. They analyze data and identify patterns. Then, based on these 
patterns, models make predictions and test those predictions on 
unseen data sets, making them more efficient than manual work. 

Through the combination of these two fields, machine learning 
and exoplanet detection, scientists are just beginning to learn 
more about this intersection (Horner et al.). Although extremely 
useful in this field, machine learning has yet to be fully developed 
as a common technique to employ in astronomy. Therefore, the 
relationship between machine learning and exoplanet detection 
research has significant gaps.

Literature Review 
Before fully comprehending the applications of machine learning 

on exoplanet detection, I needed to understand how machine 
learning works at a basic level. This meant understanding how 
they are formed, how they look for patterns in data, and what 
models are commonly used. Additionally, I had to understand the 
shortcomings of each model and how to develop my model for this 

field of analysis. Also, understanding how data is observed from 
exoplanets was vital to the initial research. 

Exoplanet Background 
To understand the use of machine learning when looking at 

exoplanets, it is important to understand what exoplanet data is 
composed of. 

Methods of Discovery 
There are many methods of discovery for finding exoplanets 

in deep space. One of the pioneering techniques in exoplanet 
discovery is the transit method. Gavin Ramsay and others, scientists 
at the Armagh Observatory and Planetarium, believe that some 
exoplanets reveal themselves through the timing variations they 
induce in the arrival of pulses from pulsars, rapidly rotating neutron 
stars (Ramsay et al.). The slight perturbations in the regular pulsar 
signals betray the gravitational influence of an unseen exoplanet. 
This method is what the Kepler space telescope used, according 
to NASA (NASA Exoplanet Archive). NASA’s Kepler spacecraft spent 
over four years collecting this data on hundreds of thousands of 
star systems. Images were collected and the pixels corresponding 
to stars were identified, and intensity and location were identified 
as well over a set period. Putting all these together generated 
the light curves for each star from which an exoplanet could be 
detected. For example, when a planet passes in front of a star, the 
brightness of that star is observed and becomes dimmer. The data 
will show a dip in flux if a planet is transiting the star as explained 
by Mousavi-Sadret and others in their study Revisiting Mass-Radius 
Relationships for Exoplanet Populations: A Machine Learning Insight 
(Mousavi-Sadret al). In a real-world light curve, the data appears 
more mangled and with several systematic uncertainties that 
need to be subtracted, so ensuring that the data is acceptable for 
machine learning is vital, especially for building models. 
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Machine Learning Algorithm Basics: Learning Techniques 
Machine learning is the process through which computers “learn” 

without being explicitly programmed as explained by Bhamare and 
others, who presented this information at the International Confer-
ence on Intelligent Technologies (Bhamare et al.). Complementary 
are typically used to rule out false positives and confirm that the 
signal identified as an exoplanet is not the result of a false positive 
source. On the other hand, Priyadarshini and Puri, writing in the 
Earth Science Informatics journal, state that advances in statistical 
and machine learning methods have led to their dependence on 
a novel procedure known as “validation,” which was created to find 
new exoplanets (Priyadarshini and Puri). Rather than depending 
on fresh observations to enhance the transit method, the recently 
discovered exoplanets are verified through previously created 
machine learning methods that emulate the neural networks 
found in the human brain. Oltjon Kodheli and other scientists at the 
University of Luxembourg affirm that machine learning increases 
the accuracy score. Therefore we can have greater confidence when 
new signals are detected from stars already identified as exoplanets 
(Kodheli et al.). 

This is extremely important for large data sets and making 
predictions or classifications for future data points. Within machine 
learning, four main learning techniques are commonly used. 
However, within exoplanet discovery, the techniques used are 
supervised learning and semi-supervised learning, as explained by 
Serjeant and others in Nature Astronomy Vol. 4. Supervised learning 
is using data to train the computer to infer a result. Essentially, it 
teaches the computer to make predictions based on the given 
data (Serjeant et al.). This technique is used so frequently because 
it allows for easier classification. By looking at already classified 
data, this technique allows the prediction to be made using the 
actual data through a model. The second most common technique 
is semi-supervised learning. This is a more realistic approach, due 
to the irregularities within the data. Many times a hybrid approach 
is necessary. Yucheng Jin and others, scientists at the University of 
California-Berkeley, explain that semi-supervised learning takes 
labeled and unlabeled data, meaning data that has already been 
classified and not classified (Jin et al.). It then takes this data to 
make a better prediction model. This technique is also helpful when 
labeling data, as seen many times with exoplanet classification. 
Overall, the fundamentals of machine learning within this field are 
built on these two techniques. 

Machine Learning Algorithm Basics: Models 
Models are the foundation of real-life applications within machine 

learning. In this field of study, the most used models are the logistic 
regression model, the K-Nearest Neighbors classifier, the decision 
tree model, and the random forest model, as highlighted by Manas 
Biswal in the Acceleron Aerospace Journal. These four models are 
all very similar, but their accuracy is vastly different. To start, the 
logistic regression model is one of the easiest to implement and 
train, however, it has the lowest precision score (Biswal). Precision 
within models is especially important because it ensures that the 
model is consistent and gives a correct representation of the data. 
Precision is calculated by dividing the number of true positives by 

the total number of predictions, according to Dr. Audenaert and a 
team of researchers at the Massachusetts Institute of Technology 
(Audenaert et al.). True positive refers to how many predicted values 
are classified as actual positive values. For example, if the model 
predicts that a value is positive, and the test data confirms that, 
that is a true positive. The higher the precision of the model, the 
higher the quality, which will allow for a more accurate prediction. 
Unfortunately, the logistic regression did not have a high precision 
score, meaning that the data was being overfitted. Overfitting 
refers to the model being unable to generalize the data. The logistic 
regression was unable to find patterns and instead just followed 
the training data. 

The second model is the k-nearest neighbors classifier. This model 
had a similar precision and accuracy score. However, this model 
experienced the same issue of overfitting. The decision tree had 
a significantly higher accuracy score, however, the noise within 
the data set was affecting the model, causing the accuracy and 
precision scores to be vastly different each time it was run. Finally, 
the Random Forest model had the highest stability (Biswal). All in 
all, these models all have one purpose, to make predictions based 
on training data. However, each model comes with its problems, 
and due to the complexity of data sets seen in the astronomy field, 
these problems can be detrimental to the model. 

Data Preprocessing Techniques for Machine Learning Algorithms 
Data preprocessing is vital to any data set, especially when it 

comes to those related to astronomy. First, one of the most common 
problems that data preprocessing solves is an unbalanced data 
set. Within a data set, there is a majority and a minority class. This 
is a huge problem as it will skew the data, causing an imbalance 
within the classification data set. However, according to researchers 
at the Cochin University of Science and Technology, one way to 
remedy this problem is by using an over-sampling method called 
Synthetic Minority Over-Sampling Technique or SMOTE. This 
creates synthetic data to equal the minority class to the majority 
class (Agnes et al.). This is extremely helpful as it balances out the 
data set, allowing for the model to find true patterns, which will 
lead to a higher precision score. Digvijay Patil and others present 
an exoplanet identification technique based on machine learning’s 
Random Forest Classification model in the International Research 
Journal of Engineering and Technology. When combined with the 
SMOTE preprocessing stage, the Random Forest Classifier Model 
was unable to predict values correctly, with less than 50% accuracy 
whether a light fluctuation had exoplanets (Patil et al.). Moreover, 
this method of preprocessing is not accurate and causes the 
accuracy to be off due to it overcompensating the minority class. 
So, even though the Random Forest Model performed well for 
comparative analysis against other models (Biswal) when isolated 
with a vital preprocessing technique, it severely underperformed 
according to Patil et al.’s study. 

Another vital preprocessing technique is mass imputation, 
which is the process of imputed values development for categories 
through information integration. This is the approach for dealing 
with missing data from the response survey in the sample according 
to Abhishek Malik in the Monthly Notices of the Royal Astronomical 
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Society Journal. The primary goal is to create a single synthetic 
dataset of proxy values for the unobserved data in Sample A 
and apply it to the associated patterns of Sample B to produce 
projection estimators of population mean (Malik et al.). This is 
particularly useful when Sample A is a large-scale survey and data 
entry is very expansive to measure, such as exoplanet datasets. The 
proxy values are generated by fitting a working model related to the 
data from Sample B. Then, the synthetic values are generators, and 
thus Sample B is used as a training sample for predicting Sample A. 
Finally, the large blocks of missing values in a dataset are generated. 
This preprocessing technique was used extensively in the study 
done by Christopher Fluke and others, researchers at Swinburne 
University of Technology. The results of this study were extremely 
effective; by using a logistic regression model they achieved a 95% 
accuracy score and a precision score of 86% (Fluke et al.). Therefore, 
a logistic regression model greatly improves through the usage of 
this technique. Performing without this, the regression performs 
at a much lower value, as seen in the study with Biswal. Pratyush 
and Gangrade, in the journal article “Automation of Transiting 
Exoplanet Detection, Identification and Habitability Assessment 
Using Machine Learning Approaches”, also experienced this with 
their Random Forest Model. With the  use of this technique, the 
effectiveness of the model increased significantly, going from 
50% accuracy to 92% accuracy (Pratyush and Gangrade). This 
demonstrates that preprocessing techniques can greatly improve 
the results of the models, but also that the variance between each 
trial of the model is vastly different. 

Another technique used is the Mean and Standard Devia-
tion-based Normalization Method techniques. The raw data’s 
statistical mean and/or standard deviation are used to normalize 
the data. Zahra Ahmed and others from Standford University 
provide several variations to rescale or modify the data using these 
metrics. It consists of Z score normalization, which is the mean and 
standard deviation measures used to rescale the data such that 
resultant features have zero mean and unit variance (Ahmed et 
al.). In each instance, X of the data is transformed into Z score to 
find the mean and standard deviation of the feature. During this 
technique, data offset for each feature is calculated and the scaling 
factor is computed using an algorithm that gives information about 
the variation of more recent features. 

While reducing the level of noise in the data, the approach 
enhances the representation of less concentrated characteris-
tics. Additionally, it preserves some of the data’s structure while 
eliminating the unit variance restriction, a feature that the Z score 
technique does not, according to Anne Dattilo in The Astronomical 
Journal. The square root of the raw data is computed, and the mean 
cantered approach is then used to rescale the data. The data is 
moved such that the highest value equals the difference between 
the feature’s two extreme values and the minimum value coincides 
with zero (Dattilo). This process’s primary drawback is that it is 
unable to produce additive multiplicative effects on the data. The 
multiplicative effect occurs when data has a standard deviation 
proportional to its mean. Abdul Karim and a team of researchers 
at the Noakhali Science and Technology University believe that 
except for the Z score method, these techniques assist in lessening 

the impact of outliers in the data but do not completely solve 
the issue of prominent features (Karim et al). But both mean and 
standard deviation measurements can change over time; none of 
the aforementioned techniques scale or convert data into an even 
numerical range. Also, this technique has yet to be used against an 
exoplanet dataset, so there is no testing of its effectiveness. 

Overall, these two problems are most commonly seen when 
dealing with models, specifically with classification data sets, and 
preprocessing leading to misinterpretation and a lack of a standard 
in the industry. Currently, the focus regarding exoplanets is clas-
sification, so there is a clear potential for misinterpretation when 
it comes to analyzing these models and their predictions. There 
needs to be a standard created for these two aspects of machine 
learning to ensure relatability for these vital models. 

The Connection 
Machine learning algorithms excel at feature extraction and pat-

tern recognition, enabling them to discern complex relationships 
within exoplanet datasets. As described by Jeroen Airapetian and 
others in The Astronomical Journal, in exoplanet classification, these 
algorithms analyze light curves, which represent the brightness of 
stars over time (Airapetian et al.). In The European Physical Journal: 
Special Topics, Margarita Safonova states that by learning patterns 
associated with confirmed exoplanets, machine learning models 
can then identify potential candidates in new datasets, streamlining 
the identification process (Safonova). The trained model can then 
autonomously classify new, unlabeled light curves based on the 
patterns it has learned. The transit method, a primary technique 
for exoplanet discovery, involves detecting the periodic dimming 
of a star’s light caused by a planet passing in front of it. Machine 
learning algorithms can enhance transit detection by differentiating 
between genuine exoplanet signals and false positives, such as 
instrumental noise in the star’s brightness. This reduces the likeli-
hood of misclassifying non-exoplanetary phenomena as planets, 
emphasizing the importance of automating this analysis. 

Gap in Research 
Deep space observations often yield data that is both noisy 

and sparse. Machine learning algorithms traditionally perform 
better with clean, well-structured datasets. However, the inherent 
challenges of deep space observations, such as low signal-to-noise 
ratios and irregular data patterns, necessitate the development 
of specialized algorithms capable of robust performance in the 
face of such challenges. Machine learning algorithms, with their 
capacity to handle large datasets, analyze intricate patterns, and 
detect anomalies, represent a crucial bridge in overcoming this 
gap. However, there still needs to be more clarity about which 
model to use and how to work around its negatives to produce 
a quality model with a high understanding of the data. This leads 
to the questions, what algorithmic approaches can be developed 
to effectively classify exoplanets based on the analysis of light 
fluctuations from their host stars, and how do these approaches 
compare to existing classification methods? 
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Dataset 
The dataset used in this study originates from the Kepler Space 
Telescope and was accessed through Kaggle.com. It records 
changes in the light intensity, or flux, of thousands of stars, which 
can provide insights into the presence of exoplanets. Each star in 
the dataset is assigned a binary designation: “2” indicates that at 
least one exoplanet has been confirmed to orbit the star, while “1” 
signifies that no exoplanets have been detected. These classifica-
tions are determined by analyzing characteristic patterns in the 
light fluctuations. For instance, Figure 1 illustrates two examples 
of light curves: the graph on the left displays periodic dips in light 
intensity, corresponding to an exoplanet orbiting the host star, 
while the graph on the right shows no such pattern, indicating the 
absence of an exoplanet. 

After downloading the dataset, it was divided into two subsets: 
one for training the machine learning models and the other for 
testing their performance. This division is critical to ensure that the 
models are evaluated on unseen data, preventing overfitting and 
assessing their ability to generalize to new scenarios. The training 
data was used to teach the models to recognize patterns in light 
curves, while the testing data was reserved to measure how well the 
models performed on data they had not previously encountered.

The dataset comprises over 3,000 data points, a volume that 
presents significant challenges for manual analysis. This difficulty 
becomes even more pronounced with larger datasets commonly 
used in exoplanetary research. The vast amount of information 
cannot be effectively examined by hand, making machine learn-
ing an indispensable tool. By automating the analysis, machine 
learning allows researchers to efficiently process these extensive 
datasets, uncovering patterns and making discoveries that would 
be infeasible through traditional methods. This dataset forms 
the foundation for evaluating the proposed binary classification 
model and conducting a comparative study of machine learning 
techniques in detecting exoplanets. 

Methodology 
In this research, there was a binary classifier model built which 
separated each light flux value into classes “Exoplanet” and “Non-Ex-
oplanet”. This exemplifies the purpose of the study, as it attempts to 
fill in the lack of a standard for which model is best and also have 
consistent results. As opposed to machine learning techniques 
applied for planet detection where features were determined 
automatically, features were derived from transformations and 
provided as inputs to an array of models for a comparative study. 
Based on the research done by other scholars in the field, the 

main cause of issues within the past used models came from the 
dataset leading to unwanted patterns and lack of reliability of which 
model is best. So, to combat this, the new binary classifier model 
was comprised of a combination of mass imputation and mean 
and standard deviation-based normalization methods, as well as 
a further developed model configuration. This meant being more 
complex, by running the data through the model multiple times 
as an already automated process. The model would repeatedly 
predict values and would use those proxy results to predict the 
values following. Figure 2 explains this process, showing the flow 
of each data point through the model. The goal of this process is 
to allow for a more accurate result.

To test the effectiveness of the new model, an experimental 
design modeled after a comparative analysis was made. First, 
five models were selected to test the new model. As these five 
were the ones most commonly used, they were deemed best fit 
to test the new model’s applicability. The chosen models include 
Long Short-term Memory-K-Nearest Neighbor (LSTM-KNN), Gated 
Recurrent Unit-Support Vector Machine (GRU-SVM), Recurrent 
Neural Network-Random Forest (RNN-RF), Convolutional Neural 
Network-Support Vector Machine (CNN-SVM), and Deep Neural 
Network-Random Forest (DNN-RF). The reasoning behind each of 
the models can be seen in the table below.

In order to test how effective these models are with the Kepler 
dataset, seven metrics were chosen. These are accuracy, precision, 
error, F1 score, true positive rate, true negative rate, and finally, 
false negative rate. The definitions of each of these can be seen in 
the following table.

Fig. 1. Example light fluxes (in lumens) from the data set (Kaggle)

Fig. 2. Architecture of the new and proposed model

Model Reasoning

LSTM-KNN 	• Well-suited for sequential data processing 
	• Ideal for capturing patterns in light curves
	• Simple and able to handle non-linear relationships

GRU-SVM 	• Best used for sequential data processing and feature extraction

RNN-RF 	• Capable of processing sequential data and extracting relevant 
features. 

	• Able to handle noisy data

CNN-SVM 	• Suitable for analyzing the structural features present in light 
curve data.

	• Able to handle high-dimensional data and non-linear 
classification boundaries.

DNN-RF 	• Hierarchical feature representation
	• Allows for complex relationships to be learned from the data.
	• Can withstand overfitting

BiGRU-SVM 	• Added one more layer as compared to the GRU-SVM Model
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These metrics provide a comprehensive assessment of each 
model’s performance in detecting exoplanets, accounting for 
both correct and incorrect classifications across different classes. In 
conclusion, the chosen models offer a diverse range of approaches 
to exoplanet detection, leveraging various ML techniques to 
analyze light curve data. Through rigorous evaluation using the 
selected metrics, we aim to identify the most effective model for 
automated exoplanet detection and contribute to advancements 
in the field of exoplanetary science. 

Results and Analysis

In contrast to LSTM-KNN at 95.02%, GRU-SVM at 93.423%, RNN-RF 
at 90.1%, CNN-SVM at 88.9%, and DNN-RF at 87%, the Bi-GRU-SVM 
(my model) technique has an accuracy rate of 98.06%, showing 
that the new model is performing the best out of all the other 
selected models. The 5 other models are all performing at least 2% 
less accurately in comparison, showing that they are not as able to 
understand the data. This relationship is also seen with the precision 
or PPV value. No other model scores close to the new model, with 
the closest being the LSTM-KNN model and all others falling short.

Figure 4 presents a comparison of the percentage of positive 
cases that the model correctly classifies or TPR. The TPR of the 
BiGRU-SVM model is 98.05%, while that of LSTM-KNN is 94%, 
GRU-SVM is 93.56%, RNN-RF is 94.89%, CNN-SVM is 90%, and 
DNN-RF is 91%. These results are similar to the previous two metrics, 
where the new model is outperforming all the following models. 
Also, another trend can be seen, where the CNN-SVM is overall 
performing the worst out of the total six models used. This can 
be due to the total complexity of that particular model. Figure 4 
also shows the error rates for different models. BiGRU-SVM model 
values are 1.9%, LSTM-KNNs are 4.98%, GRU-SVMs are 6.577%, 
RNN-RFs are 9.9%, CNN-SVMs are 11.1% and DN-RFs are 13%. Model 
performance decreases with a high error resulting in worse system 
performance and vice-versa. It also illustrates how the BiGRU-SVM 
model outperforms the traditional models in terms of error rates. 
Also, all the other metrics so far have almost opposite results, 
showing that the new model is, so far, still analyzing the data the 
most appropriately.

Figure 5 presents a comparison when the model accurately 
forecasts the negative class and F1 scores. The true negative rate 
(TNR), in comparison to LSTM-KNN at 93.3%, GRU-SVM at 95.1%, 
RNN-RF at 92%, CNN-SVM at 90%, and DNN-RF at 86.98%, the Bi-
GRU-SVM technique has a TNR of 98.05%. Again, all the results 
support the hypothesis that the new model will perform the best 
in every chosen metric. After that, the F1 scores are examined for 
these models. The BiGRU-SVM technique has an F1 Score value of 
98.07%, while LSTM-KNN is 92.8%, GRU-SVM is 91.89%, RNN-RF is 
93.23%, CNN-SVM is 89.5%, and DNN-RF is 84%. So, the duality of 
the F1 score indicated that both the precision and accuracy of the 
new model are the most optimal, in conjunction with the others 
selected.

The false negative rate (FNR) for models used in this study is 
shown in Figure 6. The FNR of the BiGRU-SVM model is 1.94%, 
while that of LSTM-KNN is 6%, GRU-SVM is 6.44%, RNN-RF is 5.11%, 
CNN-SVM is 10%, and DNN-RF is 9%. The FNR shows that the only 

Fig. 3. Comparison of accuracy and PPV for models

Fig. 4. Comparison of TPR and Error for models

Fig. 5. Comparison of TNR and F1_score for Models 

Fig. 6. Comparison of FNR models 

Metric Measured Quantity

Accuracy 	• Percentage of correctly classified 
instances

Precision (PPV) 	• The ratio of true positive predictions 
to the total predicted positives

Error 	• The overall misclassification rate

F1 Score 	• mean of precision and recall 
	• Provides a balance between the two 

metrics

True Positive Rate (TPR) 	• The proportion of actual positives 
that are correctly identified

True Negative Rate (TNR) 	• The proportion of actual negatives 
that are correctly identified 

False Negative Rate (FNR) 	• The proportion of actual positives 
that are incorrectly classified as 
negatives
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model that performs close to the new model is the RNN-RF, which 
has been underperforming in every other metric. 

New Understanding 
Overall, in every single metric, the BiGRU-SVM model func-

tioned the best and had the highest overall efficiency. This model 
consistently beat the others, which emphasizes the fact that 
preprocessing had a significant effect on the results of the model. 
The other main issue with machine learning in astronomy is also 
solved, as it was a completely conclusive result, and there is no 
ambiguity as to which model is the most effective. A standard can 
now be set in the field because there is one model that works the 
best in every metric. The BiGRU-SVM model can provide the most 
holistic view of the data and provide the most accurate predictions 
without having the same issues that are seen with other models. 

Limitations and Future Directions 
The drawback of this method is that the angle between the 

planet’s orbital plane and the direction of the observer’s line of 
sight must be sufficiently small. Therefore, the chance of this 
phenomenon occurring is not high. More time and resources must 
be allocated to detect and confirm the existence of an exoplanet to 
ensure that there is enough data to back up the predictions made 
by the models used. Another limitation is the lack of fresh data. Giv-
en that the models were only tested on the singular dataset chosen, 
the applicability of the BiGRU-SVM model is limited. Therefore, if 
the research is to be used in the future, it is important to test the 
models on a wider variety of datasets. Another approach to this 
could be using a dataset that is composed of a different approach 
to exoplanet detection. Instead of light fluctuations being used, 
a good advancement of this could be images of the exoplanets 
instead. Overall, advancing this research is very important, and 
understanding the full capabilities of this new model can help us 
understand more about exoplanets in general. 

Conclusion 
In conclusion, the burgeoning field of exoplanet detection has 

witnessed a remarkable stride with the integration of machine 
learning techniques. Through this research, a comprehensive 
exploration of exoplanet detection methodologies using machine 
learning algorithms has been conducted, culminating in the 
development of a novel model exhibiting superior performance 
compared to five existing models across seven chosen metrics. The 
dataset, consisting of light flux data, served as the foundation for 
the research, enabling the training and testing of various machine 
learning models. The comparative analysis not only underscored 
the efficacy of machine learning in discerning exoplanetary signals 
amidst noise but also highlighted the significance of preprocessing 
techniques and model optimization in achieving accurate detection 
capabilities. The preprocessing techniques used for the datasets 
include mass imputation and normalization based on the median 
and median absolute deviation, the process of simultaneously 
completing a data file’s significant missing block gaps. 

At last, the hybrid Bi-GRU-SVM approach was applied to the 
classification of exoplanets. Furthermore, the effectiveness of 

the suggested method was examined and compared to other 
traditional methods, including LSTM-KNN, GRU-SVM, RNN-RF, 
CNN-SVM, and DNN-RF. With 98.06% accuracy, 1.9% error, 98.05% 
TNR, and 98.07% F1 score, we have proven that the suggested 
method performs well. It is evident from the comparison analysis 
that the proposed model yields a more efficient outcome than the 
current methods. Overall, the new model should be used as a new 
standard for preprocessing and model architecture for all future 
models used in the field due to its extremely effective ability to 
correctly detect exoplanets in deep space.
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