Future Scholars Journal

Beyond the Stars: A Data-Driven Approach to Exoplanet Categorization

Prithika Chauhan

Abstract

Exoplanet detection improves the current understanding of planet formation and provides the possibility for the discovery
of new habitable worlds, However, teams of astronomers and astrophysicists have traditionally been the only ones capable of
identifying exoplanets. Using traditional techniques such as the Transit Method, Gravitational Microlensing, Direct Imaging Po-
larimetry, Astrometry, and Radial Velocity, researchers have attempted to identify exoplanets in the past, but manual processing
is difficult and time-consuming. An advanced approach to detecting exoplanets in space is by utilizing artificial intelligence to
solve this problem. In this study, hybrid approaches with an optimized elastic-net-based driven model were developed to detect
exoplanets effectively. The standard planet dataset was collected and pre-processed to eliminate unnecessary components that
can affect the prediction accuracy. The quality of the dataset was enhanced by the suggested framework'’s use of two distinct
pre-processing techniques, including mass imputation and median and median absolute deviation-based normalization. To
forecast the exoplanet, the pre-data was further analyzed using a feature selection procedure. The optimized elastic net was
used to carry out the feature selection. These features were then further processed for prediction using a hybrid Bidirectional
Gated Recurrent Units and Support Vector Machine (BiGRU-SVM) classifier. The performance metrics, such as accuracy, error,

TNR, and F1-score, are evaluated in the evaluation of the proposed model.

Introduction

The quest to understand exoplanets, or planets outside our solar
system, has become one of astronomy’s most intriguing and active
fields. The discovery of exoplanets has accelerated with the aid of
advanced telescopes and observation techniques. As the number of
candidate exoplanets increases, there is a growing need to analyze
these datasets collected from advanced telescopes. Telescopes
churn out millions of data points that are not feasible to understand
through manual work done by scientists. Teams of scientists within
the field need a more efficient way to understand these datasets.
One extremely effective way to do this is by employing machine
learning algorithms, which can comb through the hundreds
of thousands of data points collected by telescopes and make
predictions by identifying patterns in the data.

Machine learning, a subfield of artificial intelligence, has made
significant strides in astronomy. It offers the potential to automate
and enhance the identification of exoplanets based on available
data.They analyze data and identify patterns. Then, based on these
patterns, models make predictions and test those predictions on
unseen data sets, making them more efficient than manual work.

Through the combination of these two fields, machine learning
and exoplanet detection, scientists are just beginning to learn
more about this intersection (Horner et al.). Although extremely
useful in this field, machine learning has yet to be fully developed
as a common technique to employ in astronomy. Therefore, the
relationship between machine learning and exoplanet detection
research has significant gaps.

Literature Review

Before fully comprehending the applications of machine learning
on exoplanet detection, | needed to understand how machine
learning works at a basic level. This meant understanding how
they are formed, how they look for patterns in data, and what
models are commonly used. Additionally, | had to understand the
shortcomings of each model and how to develop my model for this

field of analysis. Also, understanding how data is observed from
exoplanets was vital to the initial research.

Exoplanet Background

To understand the use of machine learning when looking at
exoplanets, it is important to understand what exoplanet data is
composed of.

Methods of Discovery

There are many methods of discovery for finding exoplanets
in deep space. One of the pioneering techniques in exoplanet
discovery is the transit method. Gavin Ramsay and others, scientists
at the Armagh Observatory and Planetarium, believe that some
exoplanets reveal themselves through the timing variations they
induce in the arrival of pulses from pulsars, rapidly rotating neutron
stars (Ramsay et al.). The slight perturbations in the regular pulsar
signals betray the gravitational influence of an unseen exoplanet.
This method is what the Kepler space telescope used, according
to NASA (NASA Exoplanet Archive). NASA's Kepler spacecraft spent
over four years collecting this data on hundreds of thousands of
star systems. Images were collected and the pixels corresponding
to stars were identified, and intensity and location were identified
as well over a set period. Putting all these together generated
the light curves for each star from which an exoplanet could be
detected. For example, when a planet passes in front of a star, the
brightness of that star is observed and becomes dimmer. The data
will show a dip in flux if a planet is transiting the star as explained
by Mousavi-Sadret and others in their study Revisiting Mass-Radius
Relationships for Exoplanet Populations: A Machine Learning Insight
(Mousavi-Sadret al). In a real-world light curve, the data appears
more mangled and with several systematic uncertainties that
need to be subtracted, so ensuring that the data is acceptable for
machine learning is vital, especially for building models.
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Machine Learning Algorithm Basics: Learning Techniques

Machine learning is the process through which computers“learn”
without being explicitly programmed as explained by Bhamare and
others, who presented this information at the International Confer-
ence on Intelligent Technologies (Bhamare et al.). Complementary
are typically used to rule out false positives and confirm that the
signal identified as an exoplanet is not the result of a false positive
source. On the other hand, Priyadarshini and Puri, writing in the
Earth Science Informatics journal, state that advances in statistical
and machine learning methods have led to their dependence on
a novel procedure known as “validation,” which was created to find
new exoplanets (Priyadarshini and Puri). Rather than depending
on fresh observations to enhance the transit method, the recently
discovered exoplanets are verified through previously created
machine learning methods that emulate the neural networks
found in the human brain. Oltjon Kodheli and other scientists at the
University of Luxembourg affirm that machine learning increases
the accuracy score. Therefore we can have greater confidence when
new signals are detected from stars already identified as exoplanets
(Kodheli et al.).

This is extremely important for large data sets and making
predictions or classifications for future data points. Within machine
learning, four main learning techniques are commonly used.
However, within exoplanet discovery, the techniques used are
supervised learning and semi-supervised learning, as explained by
Serjeant and others in Nature Astronomy Vol. 4. Supervised learning
is using data to train the computer to infer a result. Essentially, it
teaches the computer to make predictions based on the given
data (Serjeant et al.). This technique is used so frequently because
it allows for easier classification. By looking at already classified
data, this technique allows the prediction to be made using the
actual data through a model. The second most common technique
is semi-supervised learning. This is a more realistic approach, due
to the irregularities within the data. Many times a hybrid approach
is necessary. Yucheng Jin and others, scientists at the University of
California-Berkeley, explain that semi-supervised learning takes
labeled and unlabeled data, meaning data that has already been
classified and not classified (Jin et al.). It then takes this data to
make a better prediction model. This technique is also helpful when
labeling data, as seen many times with exoplanet classification.
Overall, the fundamentals of machine learning within this field are
built on these two techniques.

Machine Learning Algorithm Basics: Models

Models are the foundation of real-life applications within machine
learning. In this field of study, the most used models are the logistic
regression model, the K-Nearest Neighbors classifier, the decision
tree model, and the random forest model, as highlighted by Manas
Biswal in the Acceleron Aerospace Journal. These four models are
all very similar, but their accuracy is vastly different. To start, the
logistic regression model is one of the easiest to implement and
train, however, it has the lowest precision score (Biswal). Precision
within models is especially important because it ensures that the
model is consistent and gives a correct representation of the data.
Precision is calculated by dividing the number of true positives by
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the total number of predictions, according to Dr. Audenaert and a
team of researchers at the Massachusetts Institute of Technology
(Audenaert et al.). True positive refers to how many predicted values
are classified as actual positive values. For example, if the model
predicts that a value is positive, and the test data confirms that,
that is a true positive. The higher the precision of the model, the
higher the quality, which will allow for a more accurate prediction.
Unfortunately, the logistic regression did not have a high precision
score, meaning that the data was being overfitted. Overfitting
refers to the model being unable to generalize the data. The logistic
regression was unable to find patterns and instead just followed
the training data.

The second model is the k-nearest neighbors classifier. This model
had a similar precision and accuracy score. However, this model
experienced the same issue of overfitting. The decision tree had
a significantly higher accuracy score, however, the noise within
the data set was affecting the model, causing the accuracy and
precision scores to be vastly different each time it was run. Finally,
the Random Forest model had the highest stability (Biswal). All in
all, these models all have one purpose, to make predictions based
on training data. However, each model comes with its problems,
and due to the complexity of data sets seen in the astronomy field,
these problems can be detrimental to the model.

Data Preprocessing Techniques for Machine Learning Algorithms

Data preprocessing is vital to any data set, especially when it
comes to those related to astronomy. First, one of the most common
problems that data preprocessing solves is an unbalanced data
set. Within a data set, there is a majority and a minority class. This
is a huge problem as it will skew the data, causing an imbalance
within the classification data set. However, according to researchers
at the Cochin University of Science and Technology, one way to
remedy this problem is by using an over-sampling method called
Synthetic Minority Over-Sampling Technique or SMOTE. This
creates synthetic data to equal the minority class to the majority
class (Agnes et al.). This is extremely helpful as it balances out the
data set, allowing for the model to find true patterns, which will
lead to a higher precision score. Digvijay Patil and others present
an exoplanet identification technique based on machine learning’s
Random Forest Classification model in the International Research
Journal of Engineering and Technology. When combined with the
SMOTE preprocessing stage, the Random Forest Classifier Model
was unable to predict values correctly, with less than 50% accuracy
whether a light fluctuation had exoplanets (Patil et al.). Moreover,
this method of preprocessing is not accurate and causes the
accuracy to be off due to it overcompensating the minority class.
So, even though the Random Forest Model performed well for
comparative analysis against other models (Biswal) when isolated
with a vital preprocessing technique, it severely underperformed
according to Patil et al’s study.

Another vital preprocessing technique is mass imputation,
which is the process of imputed values development for categories
through information integration. This is the approach for dealing
with missing data from the response survey in the sample according
to Abhishek Malik in the Monthly Notices of the Royal Astronomical
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Society Journal. The primary goal is to create a single synthetic
dataset of proxy values for the unobserved data in Sample A
and apply it to the associated patterns of Sample B to produce
projection estimators of population mean (Malik et al.). This is
particularly useful when Sample A is a large-scale survey and data
entry is very expansive to measure, such as exoplanet datasets. The
proxy values are generated by fitting a working model related to the
data from Sample B.Then, the synthetic values are generators, and
thus Sample B is used as a training sample for predicting Sample A.
Finally, the large blocks of missing values in a dataset are generated.
This preprocessing technique was used extensively in the study
done by Christopher Fluke and others, researchers at Swinburne
University of Technology. The results of this study were extremely
effective; by using a logistic regression model they achieved a 95%
accuracy score and a precision score of 86% (Fluke et al.). Therefore,
a logistic regression model greatly improves through the usage of
this technique. Performing without this, the regression performs
at a much lower value, as seen in the study with Biswal. Pratyush
and Gangrade, in the journal article “Automation of Transiting
Exoplanet Detection, Identification and Habitability Assessment
Using Machine Learning Approaches’, also experienced this with
their Random Forest Model. With the use of this technique, the
effectiveness of the model increased significantly, going from
50% accuracy to 92% accuracy (Pratyush and Gangrade). This
demonstrates that preprocessing techniques can greatly improve
the results of the models, but also that the variance between each
trial of the model is vastly different.

Another technique used is the Mean and Standard Devia-
tion-based Normalization Method techniques. The raw data'’s
statistical mean and/or standard deviation are used to normalize
the data. Zahra Ahmed and others from Standford University
provide several variations to rescale or modify the data using these
metrics. It consists of Z score normalization, which is the mean and
standard deviation measures used to rescale the data such that
resultant features have zero mean and unit variance (Ahmed et
al.). In each instance, X of the data is transformed into Z score to
find the mean and standard deviation of the feature. During this
technique, data offset for each feature is calculated and the scaling
factor is computed using an algorithm that gives information about
the variation of more recent features.

While reducing the level of noise in the data, the approach
enhances the representation of less concentrated characteris-
tics. Additionally, it preserves some of the data’s structure while
eliminating the unit variance restriction, a feature that the Z score
technique does not, according to Anne Dattilo in The Astronomical
Journal.The square root of the raw data is computed, and the mean
cantered approach is then used to rescale the data. The data is
moved such that the highest value equals the difference between
the feature’s two extreme values and the minimum value coincides
with zero (Dattilo). This process’s primary drawback is that it is
unable to produce additive multiplicative effects on the data. The
multiplicative effect occurs when data has a standard deviation
proportional to its mean. Abdul Karim and a team of researchers
at the Noakhali Science and Technology University believe that
except for the Z score method, these techniques assist in lessening

the impact of outliers in the data but do not completely solve
the issue of prominent features (Karim et al). But both mean and
standard deviation measurements can change over time; none of
the aforementioned techniques scale or convert data into an even
numerical range. Also, this technique has yet to be used against an
exoplanet dataset, so there is no testing of its effectiveness.

Overall, these two problems are most commonly seen when
dealing with models, specifically with classification data sets, and
preprocessing leading to misinterpretation and a lack of a standard
in the industry. Currently, the focus regarding exoplanets is clas-
sification, so there is a clear potential for misinterpretation when
it comes to analyzing these models and their predictions. There
needs to be a standard created for these two aspects of machine
learning to ensure relatability for these vital models.

The Connection

Machine learning algorithms excel at feature extraction and pat-
tern recognition, enabling them to discern complex relationships
within exoplanet datasets. As described by Jeroen Airapetian and
others in The Astronomical Journal, in exoplanet classification, these
algorithms analyze light curves, which represent the brightness of
stars over time (Airapetian et al.). In The European Physical Journal:
Special Topics, Margarita Safonova states that by learning patterns
associated with confirmed exoplanets, machine learning models
can then identify potential candidates in new datasets, streamlining
the identification process (Safonova). The trained model can then
autonomously classify new, unlabeled light curves based on the
patterns it has learned. The transit method, a primary technique
for exoplanet discovery, involves detecting the periodic dimming
of a star’s light caused by a planet passing in front of it. Machine
learning algorithms can enhance transit detection by differentiating
between genuine exoplanet signals and false positives, such as
instrumental noise in the star’s brightness. This reduces the likeli-
hood of misclassifying non-exoplanetary phenomena as planets,
emphasizing the importance of automating this analysis.

Gap in Research

Deep space observations often yield data that is both noisy
and sparse. Machine learning algorithms traditionally perform
better with clean, well-structured datasets. However, the inherent
challenges of deep space observations, such as low signal-to-noise
ratios and irregular data patterns, necessitate the development
of specialized algorithms capable of robust performance in the
face of such challenges. Machine learning algorithms, with their
capacity to handle large datasets, analyze intricate patterns, and
detect anomalies, represent a crucial bridge in overcoming this
gap. However, there still needs to be more clarity about which
model to use and how to work around its negatives to produce
a quality model with a high understanding of the data. This leads
to the questions, what algorithmic approaches can be developed
to effectively classify exoplanets based on the analysis of light
fluctuations from their host stars, and how do these approaches
compare to existing classification methods?
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Dataset

The dataset used in this study originates from the Kepler Space
Telescope and was accessed through Kaggle.com. It records
changes in the light intensity, or flux, of thousands of stars, which
can provide insights into the presence of exoplanets. Each star in
the dataset is assigned a binary designation: “2” indicates that at
least one exoplanet has been confirmed to orbit the star, while“1”
signifies that no exoplanets have been detected. These classifica-
tions are determined by analyzing characteristic patterns in the
light fluctuations. For instance, Figure 1 illustrates two examples
of light curves: the graph on the left displays periodic dips in light
intensity, corresponding to an exoplanet orbiting the host star,
while the graph on the right shows no such pattern, indicating the
absence of an exoplanet.

After downloading the dataset, it was divided into two subsets:
one for training the machine learning models and the other for
testing their performance. This division is critical to ensure that the
models are evaluated on unseen data, preventing overfitting and
assessing their ability to generalize to new scenarios. The training
data was used to teach the models to recognize patterns in light
curves, while the testing data was reserved to measure how well the
models performed on data they had not previously encountered.
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Fig. 1. Example light fluxes (in lumens) from the data set (Kaggle)

The dataset comprises over 3,000 data points, a volume that
presents significant challenges for manual analysis. This difficulty
becomes even more pronounced with larger datasets commonly
used in exoplanetary research. The vast amount of information
cannot be effectively examined by hand, making machine learn-
ing an indispensable tool. By automating the analysis, machine
learning allows researchers to efficiently process these extensive
datasets, uncovering patterns and making discoveries that would
be infeasible through traditional methods. This dataset forms
the foundation for evaluating the proposed binary classification
model and conducting a comparative study of machine learning
techniques in detecting exoplanets.

Methodology

In this research, there was a binary classifier model built which
separated each light flux value into classes “Exoplanet”and “Non-Ex-
oplanet”. This exemplifies the purpose of the study, as it attempts to
fill in the lack of a standard for which model is best and also have
consistent results. As opposed to machine learning techniques
applied for planet detection where features were determined
automatically, features were derived from transformations and
provided as inputs to an array of models for a comparative study.
Based on the research done by other scholars in the field, the
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main cause of issues within the past used models came from the
dataset leading to unwanted patterns and lack of reliability of which
model is best. So, to combat this, the new binary classifier model
was comprised of a combination of mass imputation and mean
and standard deviation-based normalization methods, as well as
a further developed model configuration. This meant being more
complex, by running the data through the model multiple times
as an already automated process. The model would repeatedly
predict values and would use those proxy results to predict the
values following. Figure 2 explains this process, showing the flow
of each data point through the model. The goal of this process is
to allow for a more accurate result.
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Fig. 2. Architecture of the new and proposed model

To test the effectiveness of the new model, an experimental
design modeled after a comparative analysis was made. First,
five models were selected to test the new model. As these five
were the ones most commonly used, they were deemed best fit
to test the new model’s applicability. The chosen models include
Long Short-term Memory-K-Nearest Neighbor (LSTM-KNN), Gated
Recurrent Unit-Support Vector Machine (GRU-SVM), Recurrent
Neural Network-Random Forest (RNN-RF), Convolutional Neural
Network-Support Vector Machine (CNN-SVM), and Deep Neural
Network-Random Forest (DNN-RF). The reasoning behind each of
the models can be seen in the table below.

T T S

LSTM-KNN ¢ Well-suited for sequential data processing
e |deal for capturing patterns in light curves
¢ Simple and able to handle non-linear relationships

GRU-SVM ¢ Best used for sequential data processing and feature extraction
RNN-RF ¢ Capable of processing sequential data and extracting relevant
features.

¢ Able to handle noisy data

CNN-SVM ¢ Suitable for analyzing the structural features present in light
curve data.
¢ Able to handle high-dimensional data and non-linear
classification boundaries.

DNN-RF ¢ Hierarchical feature representation
¢ Allows for complex relationships to be learned from the data.
¢ Can withstand overfitting

BiGRU-SVM e Added one more layer as compared to the GRU-SVM Model

In order to test how effective these models are with the Kepler
dataset, seven metrics were chosen. These are accuracy, precision,
error, F1 score, true positive rate, true negative rate, and finally,
false negative rate. The definitions of each of these can be seen in
the following table.
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Accuracy ¢ Percentage of correctly classified
instances

Precision (PPV) ¢ The ratio of true positive predictions
to the total predicted positives

Error ¢ The overall misclassification rate

F1 Score ¢ mean of precision and recall

e Provides a balance between the two

metrics

True Positive Rate (TPR) ¢ The proportion of actual positives
that are correctly identified

True Negative Rate (TNR) ¢ The proportion of actual negatives
that are correctly identified

False Negative Rate (FNR) ¢ The proportion of actual positives
that are incorrectly classified as
negatives

These metrics provide a comprehensive assessment of each
model’s performance in detecting exoplanets, accounting for
both correct and incorrect classifications across different classes. In
conclusion, the chosen models offer a diverse range of approaches
to exoplanet detection, leveraging various ML techniques to
analyze light curve data. Through rigorous evaluation using the
selected metrics, we aim to identify the most effective model for
automated exoplanet detection and contribute to advancements
in the field of exoplanetary science.

Results and Analysis
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Fig. 3. Comparison of accuracy and PPV for models

In contrast to LSTM-KNN at 95.02%, GRU-SVM at 93.423%, RNN-RF
at 90.1%, CNN-SVM at 88.9%, and DNN-RF at 87%, the Bi-GRU-SVM
(my model) technique has an accuracy rate of 98.06%, showing
that the new model is performing the best out of all the other
selected models. The 5 other models are all performing at least 2%
less accurately in comparison, showing that they are not as able to
understand the data. This relationship is also seen with the precision
or PPV value. No other model scores close to the new model, with
the closest being the LSTM-KNN model and all others falling short.
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Fig. 4. Comparison of TPR and Error for models

Figure 4 presents a comparison of the percentage of positive
cases that the model correctly classifies or TPR. The TPR of the
BiGRU-SVM model is 98.05%, while that of LSTM-KNN is 949%,
GRU-SVM is 93.56%, RNN-RF is 94.89%, CNN-SVM is 90%, and
DNN-RF is 91%. These results are similar to the previous two metrics,
where the new model is outperforming all the following models.
Also, another trend can be seen, where the CNN-SVM is overall
performing the worst out of the total six models used. This can
be due to the total complexity of that particular model. Figure 4
also shows the error rates for different models. BIGRU-SVM model
values are 1.9%, LSTM-KNNs are 4.98%, GRU-SVMs are 6.577%,
RNN-RFs are 9.9%, CNN-SVMs are 11.1% and DN-RFs are 13%. Model
performance decreases with a high error resulting in worse system
performance and vice-versa. It also illustrates how the BIGRU-SVM
model outperforms the traditional models in terms of error rates.
Also, all the other metrics so far have almost opposite results,
showing that the new model is, so far, still analyzing the data the
most appropriately.
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Fig. 5. Comparison of TNR and F1_score for Models

Figure 5 presents a comparison when the model accurately
forecasts the negative class and F1 scores. The true negative rate
(TNR), in comparison to LSTM-KNN at 93.3%, GRU-SVM at 95.1%,
RNN-RF at 92%, CNN-SVM at 90%, and DNN-RF at 86.98%, the Bi-
GRU-SVM technique has a TNR of 98.05%. Again, all the results
support the hypothesis that the new model will perform the best
in every chosen metric. After that, the F1 scores are examined for
these models. The BiGRU-SVM technique has an F1 Score value of
98.07%, while LSTM-KNN is 92.8%, GRU-SVM is 91.89%, RNN-RF is
93.23%, CNN-SVM is 89.5%, and DNN-RF is 84%. So, the duality of
the F1 score indicated that both the precision and accuracy of the
new model are the most optimal, in conjunction with the others
selected.
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Fig. 6. Comparison of FNR models

The false negative rate (FNR) for models used in this study is
shown in Figure 6. The FNR of the BiGRU-SVM model is 1.94%,
while that of LSTM-KNN is 6%, GRU-SVM is 6.44%, RNN-RF is 5.11%,
CNN-SVM is 10%, and DNN-RF is 9%. The FNR shows that the only
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model that performs close to the new model is the RNN-RF, which
has been underperforming in every other metric.

New Understanding

Overall, in every single metric, the BIGRU-SVM model func-
tioned the best and had the highest overall efficiency. This model
consistently beat the others, which emphasizes the fact that
preprocessing had a significant effect on the results of the model.
The other main issue with machine learning in astronomy is also
solved, as it was a completely conclusive result, and there is no
ambiguity as to which model is the most effective. A standard can
now be set in the field because there is one model that works the
best in every metric. The BiGRU-SVM model can provide the most
holistic view of the data and provide the most accurate predictions
without having the same issues that are seen with other models.

Limitations and Future Directions

The drawback of this method is that the angle between the
planet’s orbital plane and the direction of the observer’s line of
sight must be sufficiently small. Therefore, the chance of this
phenomenon occurring is not high. More time and resources must
be allocated to detect and confirm the existence of an exoplanet to
ensure that there is enough data to back up the predictions made
by the models used. Another limitation is the lack of fresh data. Giv-
en that the models were only tested on the singular dataset chosen,
the applicability of the BiIGRU-SVM model is limited. Therefore, if
the research is to be used in the future, it is important to test the
models on a wider variety of datasets. Another approach to this
could be using a dataset that is composed of a different approach
to exoplanet detection. Instead of light fluctuations being used,
a good advancement of this could be images of the exoplanets
instead. Overall, advancing this research is very important, and
understanding the full capabilities of this new model can help us
understand more about exoplanets in general.

Conclusion

In conclusion, the burgeoning field of exoplanet detection has
witnessed a remarkable stride with the integration of machine
learning techniques. Through this research, a comprehensive
exploration of exoplanet detection methodologies using machine
learning algorithms has been conducted, culminating in the
development of a novel model exhibiting superior performance
compared to five existing models across seven chosen metrics. The
dataset, consisting of light flux data, served as the foundation for
the research, enabling the training and testing of various machine
learning models. The comparative analysis not only underscored
the efficacy of machine learning in discerning exoplanetary signals
amidst noise but also highlighted the significance of preprocessing
techniques and model optimization in achieving accurate detection
capabilities. The preprocessing techniques used for the datasets
include mass imputation and normalization based on the median
and median absolute deviation, the process of simultaneously
completing a data file's significant missing block gaps.

At last, the hybrid Bi-GRU-SVM approach was applied to the
classification of exoplanets. Furthermore, the effectiveness of
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the suggested method was examined and compared to other
traditional methods, including LSTM-KNN, GRU-SVM, RNN-RF,
CNN-SVM, and DNN-RF. With 98.06% accuracy, 1.9% error, 98.05%
TNR, and 98.07% F1 score, we have proven that the suggested
method performs well. It is evident from the comparison analysis
that the proposed model yields a more efficient outcome than the
current methods. Overall, the new model should be used as a new
standard for preprocessing and model architecture for all future
models used in the field due to its extremely effective ability to
correctly detect exoplanets in deep space.
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