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Abstract

In algorithmic trading, supervised machine learning techniques like decision trees and linear regression are commonly used in
tandem with well-known technical analysis strategies. Examples include moving average crossovers, or tracking oscillators like
the relative strength index (RSI), or moving average convergence/divergence (MACD). This project explores the idea of using a
deep learning algorithm, specifically the transformer, instead of more conventional supervised machine learning algorithms,
to predict future market sentiment.

A detailed review of the data preprocessing steps, model architecture, and evaluation metrics are provided to help with the
clarity and replicability of this research. The significance of this project comes from using a lesser-known retail trading strategy
where buy-side and sell-side imbalances are targeted within the market together with the neural network. This is achieved by
engineering a dataset where each entry consists of the last 15 days of price action, including the open, high, low, and close
prices for each day, paired with indicators like volume. To use the imbalances in conjunction with the algorithm, each entry
should include the prices’ distance from a buy-side and sell-side imbalance. The output for each entry is the overall bullish/
bearish sentiment for the following five days.

Through this approach, the transformer is designed to capture long-term trends in the data to predict future market direction.
After the model was trained on this dataset, it was evaluated using accuracy and precision metrics, with results indicating the
transformer model successfully captured long-term trends better than traditional machine learning models with the addition
of imbalance information improving model accuracy. This model could help stock traders improve their existing strategies
and provide additional confirmation by providing accurate market predictions.
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Introduction

Algorithmic trading automates trading processes for both institu-
tional market makers and retail traders, with 60 to 75% of trading
volume being automated in major markets (Groette, 2024). These
strategies follow logical rules created by traders to automatically
place trades (Seth, 2023). Historically, market makers used sig-
nificant capital and high-frequency trading (HFT), which limited
individual traders from entering the field (Chen, 2024). However,
advances in technology have made automated systems more
accessible to retail traders. This paper focuses on retail algorithmic
trading because the resources used by market makers are beyond
the scope of retail traders.

Conventional retail algorithmic trading methods have limitations
that prevent them from providing a real market edge. Common
strategies include trend-following techniques like the Simple
Moving Average (SMA) and oscillators like the Moving Average
Convergence/Divergence (MACD) indicator. Other methods include
mean reversion strategies, such as the Relative Strength Index
(RSI) and Bollinger Bands, which track price divergences and
convergences (Chen, 2024). These strategies rely on historical
data and simple indicators, failing to capture important price
dependencies. Moreover, they lack flexibility to consider broader
market context and sentiment due to their strict rules. While retail
traders incorporate discretion into their strategies, automated
systems lack this subjectivity, which can be both a strength and
a limitation.

Machine learning has become more accessible, offering tools
like linear regression, decision trees, random forests, and neural
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networks, such as recurrent neural networks (RNNs) and long
short-term memory (LSTM) networks. LSTMs handle sequential
time-series data, capturing complex temporal dependencies in
price, and provide a deeper understanding of patterns, introducing
a sense of discretion and subjectivity that rule-based systems lack.
However, these algorithms have drawbacks. Linear regression fails
to capture the nonlinear nature of price. Decision trees and random
forests suit nonlinear data but struggle in unseen market conditions.
LSTMs falter with large datasets, critical when trends span decades.

A key feature of this study is the use of Fair Value Gaps (FVGs),
representing price inefficiencies when there is a gap between
market value and the “fair value” of a financial asset. lllustrated by a
three-candle sequence, these gaps arise from imbalances between
buy-side and sell-side orders. These patterns are quantified into a
dataset for model training.

The limitations of conventional retail algorithmic trading strat-
egies and the constraints of machine learning pose challenges
for retail traders seeking an edge with automated systems. They
struggle to capture long-term dependencies in data, detect
anomalies, and consider broader context in decision-making. This
research explores transformer models to investigate their potential
in financial time series, aiming to provide retail traders with a
greater advantage in automated trading systems.

Literature review

Fang et al. (2014) evaluated the profitability of 93 technical market
indicators, including advance/decline lines, volatility indices, and
the Arms index. They found little evidence that these indicators



Future Scholars Journal

could reliably predict stock market returns, and the indicators did
not outperform a simple buy-and-hold strategy.

Wen et al. (2023) reviewed the application of transformers to time
series modeling, highlighting their appeal for capturing long-range
dependencies. They explored modifications like learnable posi-
tional encodings and efficient attention mechanisms. Combining
transformers with generative models like Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs) has led to
improved performance in applications like time series forecasting
and anomaly detection, though performance can degrade with
longer input sequences.

Bilokon and Qiu (2023) compared LSTMs and transformers
in financial time series using high-frequency limit order book
data. They found that transformers offer advantages in absolute
price sequence prediction, while LSTM models perform better in
predicting price differences in specific trading strategies.

Lara-Benitez et al. (2021) evaluated transformers for univariate
time series forecasting, comparing their accuracy and efficiency
against LSTM and CNN models. Transformers outperformed
LSTMs and CNNs in accuracy, although they required more time
to generate forecasts.

Zhang et al. (2024) explored transformers in financial markets
using a custom transformer architecture for quantitative trading
strategies. They found that transformers, using transfer learning
from sentiment analysis, showed success in forecasting future
market sentiment, outperforming many traditional factor-based
strategies.

This existing literature provides a strong starting point for
exploring the potential of transformer models in financial time
series analysis and where they fill the gaps in terms of limitations
with past strategies and methodologies.

Methods

This research aims to explore how effective transformer models
can be in predicting market sentiment in the context of financial
time series analysis. The methodologies involved several different
transformer architectures to capture both short and long term
dependencies in the data.

1. Data Preparation.

c. Source: Historical price data of Apple Inc’s stock (AAPL)
over the period from January 1, 2005, to December 31,
2023, were collected from Yahoo Finance.

d. Data Points: Each entry consists of open, high, low,
close prices (OHLC) for the last 15 days, volume data, and
distances from buy-side and sell-side imbalances (FVGs).

e. FairValue Gap Identification:

i. Criteria:

1. Bullish FVG (Buy-side Imbalance Sell-side In-
efficiency - BISI): Identified using a three-can-
dle pattern where the first and third candles are
consolidation candles, and the middle candle
is a strong bullish displacement. There is a gap
between the first and third candle wicks.

2. Bearish FVG (Sell-side Imbalance Buy-side

Inefficiency - SIBI): Similar but with bearish
displacement.
ii. Implementation

1. The Imbalance class checks for valid bullish
or bearish imbalances using methods is_bull-
ish_valid() and is_bearish_valid().

2. Distances from the current price to the iden-
tified FVGs are calculated and included as
features.

f. Feature Engineering:
i. Dataset Construction:

1. OHLCV Data: Open, high, low, close prices, and
volume for the past 15 days.

2. Imbalance Features: Number of bullish and
bearish imbalances, distances to nearest bullish
and bearish FVGs.

3. Target Variables: Total number of bullish and
bearish days in the next 10 days.

g. Data Scaling and Normalization:
i. Applied StandardScaler to normalize features.
ii. Data splitinto training (January 1, 2005, to Decem-
ber 31, 2023) and testing sets (January 1, 2024, to
July 16, 2024).

2. Model/Architecture Implementations
Five transformer-based models were implemented in this study,
each designed to capture both short and long term dependen-
cies in financial time series data. The decision behind choosing
transformer models and the specific architectures are discussed
below.

Rationale
Transformer models are very effective in capturing long-range
dependencies within sequential data due to their self-attention
mechanisms. In financial time series, patterns and dependencies
can be seen across many different time scales, and capturing
these relationships is very important for accurate predictions.

Explanation of Architectural Components and Their Unique Roles
1. Transformer-based CNN:

a. Purpose and Rationale: CNN layers effectively capture
short-term patterns (rapid price change) whilst the
transformer encoder is excellent at modeling long-term
relationships.

b. Architecture:

i. CNN Layers: Three Conv1D layers with RelLU ac-
tivations and MaxPooling to capture short-term
patterns.

ii. Transformer Encoder: Four layers with eight atten-
tion heads; sinusoidal positional encoding added
to retain temporal order.

iii. Fully Connected Layer: Maps output to desired
dimension.

2. Masked Attention Encoder-Decoder Transformer Model:

a. Purpose and Rationale: Model sequential data while
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preventing the model from accessing future information
during training.

b. Architecture:

i. Encoder and Decoder Layers:
1. Each with six layers and eight attention heads.
ii. Masked Self-Attention Mechanism:
1. Masks future positions in the decoder to pre-
vent information leakage.
iii. Sinusoidal positional encoding added to input
embeddings
3. Traditional Vanilla Encoder Transformer with Sin/Cos
Positional Encoding:

a. Purpose and Rationale: Simpler architecture with fixed
positional information.

b. Architecture:

i. Input Embedding: Linear layer projecting input
features to a model dimension.

ii. Sinusoidal Positional Encoding: Provides explicit
information about the position of data points.

iii. Transformer Encoder Layers: Four layers with four
attention heads.

iv. Output Layer: Linear layer mapping the encoder’s
output to the target dimension.

4. Traditional Vanilla Encoder Transformer with Learnable
Encoding:

a. Purpose and Rationale: Simpler architecture with
learnable positional information.

b. Architecture:

i. Input Embedding:
1. Same as above.
ii. Learnable Positional Encoding:
1. Positional encodings are parameters learned
during training.
iii. Transformer Encoder Layers:
1. Same as above.
iv. Linear Output Layer\
5. Transformer-Based Variational Autoencoder (VAE):

a. Purpose and Rationale: VAEs are powerful as they
learn the latent representations of data distributions,
potentially capturing underlying patterns in the data.
The stochastic nature of VAEs allow them to account
for uncertainty in the data, thus reacting better to
anomalies.

b. Architecture:

i. Embedding Layer: Projects input features to a
model dimension.

ii. Encoder: Six layers encoding the input sequence
into a latent space.

iii. Latent Space Representation: Computes mean
and log-variance for the latent distribution.

iv. Reparameterization Trick: Allows sampling from
the latent space during training.

v. Decoder: Reconstructs the input sequence from
the latent representation.
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vi. Output Layers: Predict sentiments from the de-
coder outputs.

3. Training Process:
a. Hyperparameters:
i. Optimizer: Adam optimizer with learning rates:
1. Models 1, 2,5:0.001
2. Models 3, 4:0.0001
ii. Loss Functions:
1. Models 1-4: Mean Squared Error (MSE) loss.
2. Model 5 (VAE): Combination of Reconstruc-
tion Loss (MSE), Kullback-Leibler Divergence
(KLD), and MSE losses for bullish and bearish
predictions.
iii. Batch Size: 32 or 64 depending on the model.
iv. Epochs: 100 to 1000 depending on convergence.
b. Training Steps:
i. Forward Pass: Input data is fed through the model
to obtain predictions.
ii. Loss Computation: Calculated using the specified
loss functions.
iii. Backward Pass: Backpropagation is performed to
compute gradients.
iv. Parameter Update: Model weights are updated
using the optimizer.
v. Regularization Techniques:
1. Gradient clipping with a maximum norm of 1.0.
2. Dropout with a rate of 0.1 in transformer layers.
vi. Learning Rate Scheduler: For some models, Redu-
ceLROnPlateau reduces the learning rate once the
validation loss starts plateauing.

4. Evaluation:
a. Models are evaluated using mean squared error (MSE).
i. Measures average squared difference between
predicted and actual values.
ii. Results: MSE calculated on training and test data for
all models to assess performance.
b. Backtesting:
i. Custom Backtesting Script:
1. Uses the model predictions to simulate trading
decisions based on a set of rules.
ii. Trading Rules:
1. Buy Signal: Model predicts higher bullish
sentiment.
2. Sell Signal: Model predicts higher bearish
sentiment.
iii. Metrics Calculated:
1. Total return over the backtesting period.
2. Number of profitable trades.
3. Final account balance.
c. Visualization:
i. Prediction Plots: Comparing true values and model
predictions over time.
ii. Loss Curves: For viewing training convergence.
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5. Tools and Software:

a. Programming Language: Python 3.11

b. Libraries and Frameworks:
i. Data Handling: Pandas, NumPy.
ii. Data Visualization: Matplotlib, Plotly.
ii. Machine Learning: PyTorch for model

implementation.
c. Hardware: Tensors moved to and trained on a Nvidia RTX
4070 for efficiency
1
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Results

The the following section goes over the results of backtesting
conducted on the transformer-based models
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Fig. 2. Results of Evaluating CNN-Transformer
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Fig. 3. Results of Evaluating CNN-Transformer on a Different Test Set

Performance Overview:
e MSE on Test Set: 1.792 Observations:
Observations:
e Demonstrated moderate accuracy in predicting both
bullish and bearish sentiment.
o Effectively captured short-term patterns due to the CNN
layers but struggled with long-range dependencies and
high volatility.

2. Vanilla Encoder-Only Transformer
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Fig. 4. Results of Evaluating Vanilla Encoder-Only Transformer on a Test
Set Performance Overview:

Performance Overview:
e MSE on Test Set: 1.092
Observations:
e Had greater difficulty in predicting sentiment compared
to other models.
e Captured some short-term patterns but overall perfor-
mance was less satisfactory.

3. Masked-Attention Encoder-Decoder Transformer

Bullish Bearish

— Predictions
0.0 — Actual

0 20 40 60 80 0 20 40 60 80

Fig. 5. Results of Evaluating Masked-Attention Encoder-Decoder Trans-
former Performance Overview:

Performance Overview:
e MSE onTest Set: 0.1967
Observations:
¢ Showed significantimprovement in predicting sentiment
compared to the CNN-Transformer.
e Better generalization to unseen data due to the masked
attention mechanism.
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Visualization:
e Predictions aligned more closely with actual market
sentiment.
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Fig. 6. Results of Backtesting Vanilla Encoder-only Transformer with FVG
Data

Vanilla Transformer with FVG Data: Demonstrated clear profit-
ability in a simulated trading environment.

e Initial Balance: $10,000

e Final Balance after 100 Trades: $10,244

e Total Return: 2.44%

Statistical Analysis

The MSE metric was calculated for predictions. The vanilla
transformer with FVG data had an MSE of 1.79, showing a clear
distinction in accuracy compared to models without FVG data.
The masked attention model had a lower MSE, indicating better
generalization to unseen data.

Discussion

The findings highlight the potential of transformer models in

capturing future market sentiment and providing practical value

to algorithmic trading systems. Models integrated with FVG data

generally outperformed those with only OHLCV data.
Effectiveness of Transformer Models:

¢ The masked-attention transformer showed the best
performance, aligning with Wen et al. (2023), indicating
the importance of preventing information leakage from
future time steps.

Importance of Fair Value Gaps (FVGs):

e The inclusion of FVG data improved model accuracy,
suggesting that specialized market indicators enhance
performance.

Comparison with Previous Studies:

¢ Theresults align with conclusions from previous research
about the effectiveness of transformer models in time
series forecasting.

Conclusion

This study demonstrates the effectiveness of transformer models in
predicting future market sentiment for algorithmic trading systems.
The integration of buy-side and sell-side imbalances through Fair
Value Gaps provided a significant edge over traditional datasets and
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models, as evidenced by the improved accuracy and profitability
in backtesting.

Key Takeaways:

e Transformer models, especially those with masked
attention mechanisms, can capture complex temporal
dependencies in financial time series data.

¢ Feature engineering, including the usage of techni-
cal market indicators like FVGs, improves model
performance.

e The models developed can potentially help stock traders
enhance existing strategies by providing more accurate
market predictions.

Further Research:
Model Enhancements:
¢ Explore combining transformers with Generative Aversial
Networks (GANs) or Long Short-Term Memory (LSTM)
networks to potentially improve prediction accuracy.
¢ Explore different attention mechanisms, such as prob-
sparse or adaptive attention, to handle larger sequences.
More Data:
¢ Include more technical/macroeconomic indicators and
news sentiment analysis features to provide a broader
context of market conditions.
Real-world Application:
e Test the model in live trading to test its practicality and
adaptability to real-time market conditions.
¢ Implement adaptive learning techniques that would
allow the model to adapt to changing market dynamics.
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