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Introduction
Algorithmic trading automates trading processes for both institu-
tional market makers and retail traders, with 60 to 75% of trading 
volume being automated in major markets (Groette, 2024). These 
strategies follow logical rules created by traders to automatically 
place trades (Seth, 2023). Historically, market makers used sig-
nificant capital and high-frequency trading (HFT), which limited 
individual traders from entering the field (Chen, 2024). However, 
advances in technology have made automated systems more 
accessible to retail traders. This paper focuses on retail algorithmic 
trading because the resources used by market makers are beyond 
the scope of retail traders.

Conventional retail algorithmic trading methods have limitations 
that prevent them from providing a real market edge. Common 
strategies include trend-following techniques like the Simple 
Moving Average (SMA) and oscillators like the Moving Average 
Convergence/Divergence (MACD) indicator. Other methods include 
mean reversion strategies, such as the Relative Strength Index 
(RSI) and Bollinger Bands, which track price divergences and 
convergences (Chen, 2024). These strategies rely on historical 
data and simple indicators, failing to capture important price 
dependencies. Moreover, they lack flexibility to consider broader 
market context and sentiment due to their strict rules. While retail 
traders incorporate discretion into their strategies, automated 
systems lack this subjectivity, which can be both a strength and 
a limitation.

Machine learning has become more accessible, offering tools 
like linear regression, decision trees, random forests, and neural 

networks, such as recurrent neural networks (RNNs) and long 
short-term memory (LSTM) networks. LSTMs handle sequential 
time-series data, capturing complex temporal dependencies in 
price, and provide a deeper understanding of patterns, introducing 
a sense of discretion and subjectivity that rule-based systems lack. 
However, these algorithms have drawbacks. Linear regression fails 
to capture the nonlinear nature of price. Decision trees and random 
forests suit nonlinear data but struggle in unseen market conditions. 
LSTMs falter with large datasets, critical when trends span decades.

A key feature of this study is the use of Fair Value Gaps (FVGs), 
representing price inefficiencies when there is a gap between 
market value and the “fair value” of a financial asset. Illustrated by a 
three-candle sequence, these gaps arise from imbalances between 
buy-side and sell-side orders. These patterns are quantified into a 
dataset for model training.

The limitations of conventional retail algorithmic trading strat-
egies and the constraints of machine learning pose challenges 
for retail traders seeking an edge with automated systems. They 
struggle to capture long-term dependencies in data, detect 
anomalies, and consider broader context in decision-making. This 
research explores transformer models to investigate their potential 
in financial time series, aiming to provide retail traders with a 
greater advantage in automated trading systems.

Literature review
Fang et al. (2014) evaluated the profitability of 93 technical market 
indicators, including advance/decline lines, volatility indices, and 
the Arms index. They found little evidence that these indicators 
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could reliably predict stock market returns, and the indicators did 
not outperform a simple buy-and-hold strategy.

Wen et al. (2023) reviewed the application of transformers to time 
series modeling, highlighting their appeal for capturing long-range 
dependencies. They explored modifications like learnable posi-
tional encodings and efficient attention mechanisms. Combining 
transformers with generative models like Variational Autoencoders 
(VAEs) and Generative Adversarial Networks (GANs) has led to 
improved performance in applications like time series forecasting 
and anomaly detection, though performance can degrade with 
longer input sequences.

Bilokon and Qiu (2023) compared LSTMs and transformers 
in financial time series using high-frequency limit order book 
data. They found that transformers offer advantages in absolute 
price sequence prediction, while LSTM models perform better in 
predicting price differences in specific trading strategies.

Lara-Benítez et al. (2021) evaluated transformers for univariate 
time series forecasting, comparing their accuracy and efficiency 
against LSTM and CNN models. Transformers outperformed 
LSTMs and CNNs in accuracy, although they required more time 
to generate forecasts.

Zhang et al. (2024) explored transformers in financial markets 
using a custom transformer architecture for quantitative trading 
strategies. They found that transformers, using transfer learning 
from sentiment analysis, showed success in forecasting future 
market sentiment, outperforming many traditional factor-based 
strategies.

This existing literature provides a strong starting point for 
exploring the potential of transformer models in financial time 
series analysis and where they fill the gaps in terms of limitations 
with past strategies and methodologies.

Methods
This research aims to explore how effective transformer models 
can be in predicting market sentiment in the context of financial 
time series analysis. The methodologies involved several different 
transformer architectures to capture both short and long term 
dependencies in the data.

1. Data Preparation.
c.	 Source: Historical price data of Apple Inc’s stock (AAPL) 

over the period from January 1, 2005, to December 31, 
2023, were collected from Yahoo Finance.

d.	 Data Points: Each entry consists of open, high, low, 
close prices (OHLC) for the last 15 days, volume data, and 
distances from buy-side and sell-side imbalances (FVGs).

e.	 Fair Value Gap Identification:
i.	 Criteria:

1.	 Bullish FVG (Buy-side Imbalance Sell-side In-
efficiency - BISI): Identified using a three-can-
dle pattern where the first and third candles are 
consolidation candles, and the middle candle 
is a strong bullish displacement. There is a gap 
between the first and third candle wicks.

2.	 Bearish FVG (Sell-side Imbalance Buy-side 

Inefficiency - SIBI): Similar but with bearish 
displacement.

ii.	 Implementation
1.	 The Imbalance class checks for valid bullish 

or bearish imbalances using methods is_bull-
ish_valid() and is_bearish_valid().

2.	 Distances from the current price to the iden-
tified FVGs are calculated and included as 
features.

f.	 Feature Engineering:
i.	 Dataset Construction:

1.	 OHLCV Data: Open, high, low, close prices, and 
volume for the past 15 days.

2.	 Imbalance Features: Number of bullish and 
bearish imbalances, distances to nearest bullish 
and bearish FVGs.

3.	 Target Variables: Total number of bullish and 
bearish days in the next 10 days.

g.	 Data Scaling and Normalization:
i.	 Applied StandardScaler to normalize features.
ii.	 Data split into training (January 1, 2005, to Decem-

ber 31, 2023) and testing sets (January 1, 2024, to 
July 16, 2024).

2. Model/Architecture Implementations
Five transformer-based models were implemented in this study, 
each designed to capture both short and long term dependen-
cies in financial time series data. The decision behind choosing 
transformer models and the specific architectures are discussed 
below.

Rationale
Transformer models are very effective in capturing long-range 
dependencies within sequential data due to their self-attention 
mechanisms. In financial time series, patterns and dependencies 
can be seen across many different time scales, and capturing 
these relationships is very important for accurate predictions.

Explanation of Architectural Components and Their Unique Roles
1.	 Transformer-based CNN:

a.	 Purpose and Rationale: CNN layers effectively capture 
short-term patterns (rapid price change) whilst the 
transformer encoder is excellent at modeling long-term 
relationships.

b.	 Architecture:
i.	 CNN Layers: Three Conv1D layers with ReLU ac-

tivations and MaxPooling to capture short-term 
patterns.

ii.	 Transformer Encoder: Four layers with eight atten-
tion heads; sinusoidal positional encoding added 
to retain temporal order.

iii.	 Fully Connected Layer: Maps output to desired 
dimension.

2.	 Masked Attention Encoder-Decoder Transformer Model:
a.	 Purpose and Rationale: Model sequential data while 
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preventing the model from accessing future information 
during training.

b.	 Architecture:
i.	 Encoder and Decoder Layers:

1.	 Each with six layers and eight attention heads.
ii.	 Masked Self-Attention Mechanism:

1.	 Masks future positions in the decoder to pre-
vent information leakage.

iii.	 Sinusoidal positional encoding added to input 
embeddings

3.	 Traditional Vanilla Encoder Transformer with Sin/Cos 
Positional Encoding:

a.	 Purpose and Rationale: Simpler architecture with fixed 
positional information.

b.	 Architecture:
i.	 Input Embedding: Linear layer projecting input 

features to a model dimension.
ii.	 Sinusoidal Positional Encoding: Provides explicit 

information about the position of data points.
iii.	 Transformer Encoder Layers: Four layers with four 

attention heads.
iv.	 Output Layer: Linear layer mapping the encoder’s 

output to the target dimension.
4.	 Traditional Vanilla Encoder Transformer with Learnable 

Encoding:
a.	 Purpose and Rationale: Simpler architecture with 

learnable positional information.
b.	 Architecture:

i.	 Input Embedding:
1.	 Same as above.

ii.	 Learnable Positional Encoding:
1.	 Positional encodings are parameters learned 

during training.
iii.	 Transformer Encoder Layers:

1.	 Same as above.
iv.	 Linear Output Layer\

5.	 Transformer-Based Variational Autoencoder (VAE):
a.	 Purpose and Rationale: VAEs are powerful as they 

learn the latent representations of data distributions, 
potentially capturing underlying patterns in the data. 
The stochastic nature of VAEs allow them to account 
for uncertainty in the data, thus reacting better to 
anomalies.

b.	 Architecture:
i.	 Embedding Layer: Projects input features to a 

model dimension.
ii.	 Encoder: Six layers encoding the input sequence 

into a latent space.
iii.	 Latent Space Representation: Computes mean 

and log-variance for the latent distribution.
iv.	 Reparameterization Trick: Allows sampling from 

the latent space during training.
v.	 Decoder: Reconstructs the input sequence from 

the latent representation.

vi.	 Output Layers: Predict sentiments from the de-
coder outputs.

3. Training Process:
a.	 Hyperparameters:

i.	 Optimizer: Adam optimizer with learning rates:
1.	 Models 1, 2, 5: 0.001
2.	 Models 3, 4: 0.0001

ii.	 Loss Functions:
1.	 Models 1-4: Mean Squared Error (MSE) loss.
2.	 Model 5 (VAE): Combination of Reconstruc-

tion Loss (MSE), Kullback-Leibler Divergence 
(KLD), and MSE losses for bullish and bearish 
predictions.

iii.	 Batch Size: 32 or 64 depending on the model.
iv.	 Epochs: 100 to 1000 depending on convergence.

b.	 Training Steps:
i.	 Forward Pass: Input data is fed through the model 

to obtain predictions.
ii.	 Loss Computation: Calculated using the specified 

loss functions.
iii.	 Backward Pass: Backpropagation is performed to 

compute gradients.
iv.	 Parameter Update: Model weights are updated 

using the optimizer.
v.	 Regularization Techniques:

1.	 Gradient clipping with a maximum norm of 1.0.
2.	 Dropout with a rate of 0.1 in transformer layers.

vi.	 Learning Rate Scheduler: For some models, Redu-
ceLROnPlateau reduces the learning rate once the 
validation loss starts plateauing.

4. Evaluation:
a.	 Models are evaluated using mean squared error (MSE).

i.	 Measures average squared difference between 
predicted and actual values.

ii.	 Results: MSE calculated on training and test data for 
all models to assess performance.

b.	 Backtesting:
i.	 Custom Backtesting Script:

1.	 Uses the model predictions to simulate trading 
decisions based on a set of rules.

ii.	 Trading Rules:
1.	 Buy Signal: Model predicts higher bullish 

sentiment.
2.	 Sell Signal: Model predicts higher bearish 

sentiment.
iii.	 Metrics Calculated:

1.	 Total return over the backtesting period.
2.	 Number of profitable trades.
3.	 Final account balance.

c.	 Visualization:
i.	 Prediction Plots: Comparing true values and model 

predictions over time.
ii.	 Loss Curves: For viewing training convergence.
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5. Tools and Software:
a.	 Programming Language: Python 3.11
b.	 Libraries and Frameworks:

i.	 Data Handling: Pandas, NumPy.
ii.	 Data Visualization: Matplotlib, Plotly.
iii.	 Machine Learning:  PyTorch for model 

implementation.
c.	 Hardware: Tensors moved to and trained on a Nvidia RTX 

4070 for efficiency

Results
The the following section goes over the results of backtesting 
conducted on the transformer-based models

1. CNN-Transformer Model

Performance Overview:
	• MSE on Test Set: 1.792 Observations:

Observations:
	• Demonstrated moderate accuracy in predicting both 

bullish and bearish sentiment.
	• Effectively captured short-term patterns due to the CNN 

layers but struggled with long-range dependencies and 
high volatility.

2. Vanilla Encoder-Only Transformer

Fig. 4. Results of Evaluating Vanilla Encoder-Only Transformer on a Test 
Set Performance Overview:

Performance Overview:
	• MSE on Test Set: 1.092

Observations:
	• Had greater difficulty in predicting sentiment compared 

to other models.
	• Captured some short-term patterns but overall perfor-

mance was less satisfactory.

3. Masked-Attention Encoder-Decoder Transformer

Performance Overview:
	• MSE on Test Set: 0.1967

Observations:
	• Showed significant improvement in predicting sentiment 

compared to the CNN-Transformer.
	• Better generalization to unseen data due to the masked 

attention mechanism.

Fig. 1. Retracement and Respect of 
Bearish FVG. Figure 1. shows an exam-
ple of a bearish fair value gap or SIBI.

Fig. 2. Results of Evaluating CNN-Transformer

Fig. 3. Results of Evaluating CNN-Transformer on a Different Test Set

Fig. 5. Results of Evaluating Masked-Attention Encoder-Decoder Trans-
former Performance Overview:
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Visualization:
	• Predictions aligned more closely with actual market 

sentiment.

Fig. 6. Results of Backtesting Vanilla Encoder-only Transformer with FVG 
Data

Vanilla Transformer with FVG Data: Demonstrated clear profit-
ability in a simulated trading environment.

	• Initial Balance: $10,000
	• Final Balance after 100 Trades: $10,244
	• Total Return: 2.44%

Statistical Analysis
The MSE metric was calculated for predictions. The vanilla 

transformer with FVG data had an MSE of 1.79, showing a clear 
distinction in accuracy compared to models without FVG data. 
The masked attention model had a lower MSE, indicating better 
generalization to unseen data.

Discussion
The findings highlight the potential of transformer models in 
capturing future market sentiment and providing practical value 
to algorithmic trading systems. Models integrated with FVG data 
generally outperformed those with only OHLCV data.

Effectiveness of Transformer Models:
	• The masked-attention transformer showed the best 

performance, aligning with Wen et al. (2023), indicating 
the importance of preventing information leakage from 
future time steps.

Importance of Fair Value Gaps (FVGs):
	• The inclusion of FVG data improved model accuracy, 

suggesting that specialized market indicators enhance 
performance.

Comparison with Previous Studies:
	• The results align with conclusions from previous research 

about the effectiveness of transformer models in time 
series forecasting.

Conclusion
This study demonstrates the effectiveness of transformer models in 
predicting future market sentiment for algorithmic trading systems. 
The integration of buy-side and sell-side imbalances through Fair 
Value Gaps provided a significant edge over traditional datasets and 

models, as evidenced by the improved accuracy and profitability 
in backtesting.

Key Takeaways:
	• Transformer models, especially those with masked 

attention mechanisms, can capture complex temporal 
dependencies in financial time series data.

	• Feature engineering, including the usage of techni-
cal market indicators like FVGs, improves model 
performance.

	• The models developed can potentially help stock traders 
enhance existing strategies by providing more accurate 
market predictions.

Further Research:
Model Enhancements:

	• Explore combining transformers with Generative Aversial 
Networks (GANs) or Long Short-Term Memory (LSTM) 
networks to potentially improve prediction accuracy.

	• Explore different attention mechanisms, such as prob-
sparse or adaptive attention, to handle larger sequences.

More Data:
	• Include more technical/macroeconomic indicators and 

news sentiment analysis features to provide a broader 
context of market conditions.

Real-world Application:
	• Test the model in live trading to test its practicality and 

adaptability to real-time market conditions.
	• Implement adaptive learning techniques that would 

allow the model to adapt to changing market dynamics.
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